XENO HPC-1550

Hybrid Pulse Capacitor

SPECIFICATIONS

1.Scope

This data sheet describes the mechanical design and performance of Xeno (Hybrid Pulse Capacitor) model HPC-1550 optimized for extreme temperatures used in an Hybrid battery system.

2.Mechanical characteristics

Physical:

Length:	51.0 mm. max
Diameter:	15.0 mm. max
Weight:	20.3 gr. max

3.Electrical characteristics

- 3.1. Discharge
 - Discharge capacity (at RT):

When charged to 3 67V: Discharge end Voltage:	560 A*sec 2.5V (discharge below 2.5V at RT and discharge below 2.0V at -40 ℃ may increase the HPC internal impedance)
Maximum discharge current:	Continuous: 2,000mA Pulse: 5,000mA
 3.2. Charge (constant current) Max charge voltage: Standard charging current Max charging current: 	3.95V 50mA 100 mA

- 3.3. Cell impedance: Less than 100 mΩ (at RT @ 1kHz)
- 3.4. Shelf life

Shelf life at different storage temperature to 80% of initial capacity. used in a Hybrid battery system.

Temperature	HPC	HPC in Hybrid battery system
RT	3 years	>10 years
60℃	4 weeks	7 years
30℃	1 week	1 year

Any values in product catalogues are for informational purposes only.

They can also differ from actual conditions of usage and not warranties of future performance.

XENO HPC-1550

Hybrid Pulse Capacitor

SPECIFICATIONS

3.5 Self discharge in Hybrid battery.

at RT: 3/^{µA} at 80 ℃: 15/^{µA}

3.6 Number of charge-discharge cycles to 80% of initial capacity.

	100% DOD	10% DOD	1% DOD
Charge to 3.67V	1,000	10,000	100,000
Charge to 3.90V	800	8,000	80,000

* DOD (Depth of Discharge)

3.7 Performance Data

Any values in product catalogues are for informational purposes only.

They can also differ from actual conditions of usage and not warranties of future performance.

XENO HPC-1550

Hybrid Pulse Capacitor

SPECIFICATIONS

Xeno Batteries performed the tests according to UL 1642 specification for Lithium batteries.

The HPC is not restricted for air transportation

3.9 Operating / Storage Temperature range

Test Item	HPC-1550 used independently	HPC-1550 in Hybrid battery system
Operating Temperature	-30 ℃ to 60 ℃	-40 ℃ to 85 ℃
Storage Temperature	-30 ℃ to 60 ℃	-30 ℃ to 60 ℃

Warning:

-The HPC is designed for use in a HPC battery system or in low charge current as specified only.

-The HPC may explode or violently vent if over-charge above 4.4V.

-Do not charge the HPC higher than 4.1V, over-discharge, short circuit, heat above 100 ℃, incinerate or expose content to water.

-Charging the HPC at above 3.95V may lead to capacity loss and / or internal impedance rise.

Any values in product catalogues are for informational purposes only.

They can also differ from actual conditions of usage and not warranties of future performance.